实例分析
一起来看个具体例子:某个打车出行APP,已按RFM格式,统计好用户数据(如下图,仅为示例数据100条),现领导要求:分析分析用户情况。要怎么分析呢?第一步
第一步:先看M。区分用户价值是第一位的,先认清谁是大客户,谁是小客户,后边工作思路才清晰。这里只有100个例子,因此可以直接用excel的排序功能。 但假如数据有10000条,再排序一条条看就很不方便了,因此推荐一个通用的分类方法:十等分法。 十等分法背后的原理是:二八定律。相当多的业务,都是消费排名前20%的用户贡献80%的消费。因此可以先把用户按消费高低,分成10组,然后再看每一组的消费占整体比例,找出大客户。具体操作如下图所示第二步
分好组以后,可以打开数据透视表,看一下每组的消费占比 哇!第一组用户就贡献了40%+的消费,前三组合起来,共30%的用户贡献额74%的消费,真是大客户呢,因此可以分类如下:第一组:VIP3(最高级VIP) 第二组、第三组:VIP2(每组消费占整体大于10%) 第四、第五组:VIP1(每组消费占整体大于5%,小于10%) 剩下5组:VIP0(单组消费占整体不足5%)
第三步
分类完以后可以观察每组的消费门槛在哪里,比如第一组的门槛是798元/月。在运营制定策略的时候,很有可能为了方便,找一个最近的整数。因此可以做一个手动调整,把VIP3的门店改到:一个月内消费800元。类似地,其他门槛也能做同样调整。 调整好了以后,我们已经分离出了大客户/小客户,可以做下一步的分类了。下一步可以做R。谁会一个月打车打几百上千块元呢?可能是有刚需以车代步的人(比如经常出差的白领,有交通费的管理层等等)。 这些人应该一直会有用车需求,我们要防备的,就是他们被别家打车软件勾引走。此时R值就很重要了,如果一个大客户长时间不来,很有可能已经被人挖走了,我们要赶紧挖回来。 那么如何确定R的分类呢?可以直接根据业务特点来定。比如打车,即使再需要坐车的人,也不可能天天出门,因此R值不需要设定的太短,否则天天在人家耳朵边喊:“来坐车来坐车”,也太过度骚扰用户了。 R值可以以周为单位分类。除了十一厂家,一周内有工作日和休息日,因此再迟1周也该来坐车了(如下图) 分好类以后,可以做交叉表,观察不同VIP的客户在R值分布情况(如下图) 看起来,VIP等级越高,R值越小,而VIP0的用户,居然有80%已经2周以上都没来了,要么真的没需求,要么已经流失了。这样,对VIP0的分析建议,也很清楚了:结合天气、节假日、活动等具体场景,给小额优惠,配合单次打车优惠券唤醒用户。频繁用车的大客户都是刚需,所以不要维护了,重点挽留很久没有用过APP的 只用1次以后就再也不来的,不是核心客户,所以不要唤醒了,重点挽留大客户
总结
这些结论,都是基于同一个数据的不同解读,在没有经历过测试之前,没有对错之分。因此领导他老人家高兴就好。作为提供建议的人,我们做好分类,有充足的数据即可。 以上就是一个简单的示例。需要特别提醒的是:很多做运营的小伙伴,脑子里没有啥套路。对于活动、文案、设计的各种玩法甚至还没有小熊妹懂得多。那可不!我可是各大APP薅羊毛高手,光手机号就有5个呢,哼!。 在懂得太少的情况下,就不能把运营上的做法,转化成一个可以分析的数据,也就没法做分析了。 就比如RFM,本身它只是一个计算方法,没有人教过结合到具体场景该怎么分(比如买菜就和打车不一样),因此还是得靠小伙伴们自己多掌握一些方法,结合实际思考,才能解决问题哦。如需转载请保留本文出处: https://www.zhe94.com/901.html